六个维度打造中国特色的智能工厂
导读:如何打造中国特色的智能工厂?从哪几个方面入手?智能做成什么程度?
文丨兰光创新董事长 朱铎先
智能工厂的建设原则
经过深入研究工业4.0、中国制造2025等战略,结合十多年数字化车间建设的经验,兰光创新认为,制造企业应以中国制造2025为宗旨,以两化深度融合为突破口,参考德国工业4.0中的智能工厂模式及美国GE工业互联网等先进理念,结合企业实际情况,以人为本,建设“设备自动化、人员高效化、管理信息化”的中国特色的智能工厂。
▲典型的智能工厂示意图
① 智能工厂的实施广度
我们可以参考德国工业4.0中对“智能工厂”的定义:重点研究智能化生产系统及过程,以及网络化分布式生产设施的实现。前半句“智能化生产系统及过程”,是说除了包括智能化的机床、机器人等生产设施以外,还包括对生产过程的智能化管控,站在信息化的角度,就是智能化的MES制造执行系统。而后半句:“以及网络分布式生产设施的实现”,是指将生产所用的生产设施(如机床、热处理设备、机器人、AGV、测量测试等各种数字化设备),进行互联互通、智能化的管理,实现信息化系统与物理系统的深度融合。目前很多企业实施的DNC/MDC(设备联网、设备监控系统)是其重要的基础。
② 智能工厂的实施深度
按照工业4.0战略的描述,理想状态的智能制造是一种高度自动化、高度信息化、高度网络化的生产模式,工厂内人、机、料自主协同,自组织、高效运转;工厂间,通过端对端集成、横向集成,实现了价值链的共享、协作,效率、成本、质量、个性化都得到了质的飞跃。
对于中国制造企业而言,现在恰逢“三期交叠”的困难期,企业希望既要符合工业4.0或者是中国制造2025的发展方向,又要投资小、见效快、确保成功率,如何在两者之间平衡,是一个很现实、也很重要的问题。
兰光创新认为,在本次智能化制造的革命中,企业一定要“着眼长远、立足当下”。既要符合工业4.0 的理念,体现出其主要特点,又要本着务实的原则实施工业4.0战略。比如,要汲取以前CIMS实施的经验与教训,不要过于理想化,不要过多强调自组织、自学习、自执行等高难度的智能技术,企业不是突破什么关键智能制造技术的研究单位,而是以创造效益为根本目的,要总体规划、分步实施,以效益为驱动,确保成功率。在自动化的基础上,实现信息化、网络化,在管理方面深挖潜力,充分发挥人的作用,构建具有适度智能的数字化、网络化、高效化、个性化的智能生产模式,切实做到明显的“提质增效”。并以量化为指标,循序渐进,全面提升企业的竞争力。假如通过3年时间,能将设备利用率提高100%,兰光创新认为就极有可能“确保企业的未来”,这些作法就是符合工业4.0战略思想的。
③ 建设智能工厂要有全局的、系统的思想
最近,与制造企业进行有关智能工厂方面的交流时,看到生产效率与日本、欧美国家等发达国家的巨大差距后,很多管理者往往着急地说,我要再买些机器人加强自动化,或者说我要加强考核,让工人提高效率。
兰光创新认为,认识到自己与别人的差距,并有决心去行动、去改变,这是非常值得肯定的事情,但智能工厂是个系统工程,而不是从某个单一环节上就能解决的,光靠购买大量的设备或者仅对工人加强管理,对整体而言效果是有限的。试想一下:
如果生产计划都不准确,排产结果都是延期的,你怎么能够让工人保证按期交货?如果生产计划都是不科学的,本身就存在大量的等待时间,企业又怎么能怪工人不努力?
生产过程中,操作工与刀具、物料等生产准备人员本来就是并行协同的关系,如果一直延续以前串行的工作模式,出现“操作者很忙,机床很闲”的局面是在所难免的,单个工人身上已经很难挖掘潜力了,必须从生产流程、组织管理上进行优化管理;
还比如,如果信息化系统与生产设备脱节,不能充分发挥高端设备数字化通讯、自动采集等方面的优势,所有的工作还靠人工输入,又怎么能保证数据的实时性、准确性、客观性?没有这些数据的支撑,又怎么能及时获知生产信息,及时作出科学的管理决策?
如果不能对物料、刀具、量具、夹具等生产资源进行精益化的管控,不是积压就是短缺,这种粗放型的管理又如何能保证生产效率的提升与成本的降低?
前面也讲过,数据就是企业的财富,没有良好的信息化管理系统,没有自动化的数据采集系统,没有智能化的大数据分析,没有形象直观的展示系统,这些数据就白白丢失掉了,企业永远只能处于凭经验、拍脑袋的粗放型管理状态。
兰光创新认为,企业在智能工厂建设时一定要从全局思考,打造一个全面的、有体系的智能工厂管理系统,从各个方面进行优化、挖掘潜力,最大程度地提升企业的生产效率及管理水平。
六个维度打造中国特色的智能工厂
- 如何打造中国特色智能工厂?
- 从哪几个方面入手?
- 智能做成什么程度?
针对这些企业关心的问题,兰光创新在领先的智能工厂整体解决方案的基础上,结合工业4.0等先进理念,在国内首次提出了 “六维智能理论”,即要从6个维度的“智能”打造中国特色的智能工厂:智能计划排产、智能生产过程协同、智能设备互联互通、智能生产资源管控、智能质量过程控制、智能大数据分析与决策支持。
该理论分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手,实现全面的精细化、精准化、自动化、信息化、网络化的智能化管理与控制,既很好地符合了德国智能工厂的定义,又能与美国工业互联网、以及中国制造2025等理念完全吻合。
▲全模块的兰光智能工厂
▲“6维智能工厂”理论
下面,简单地介绍一下这6个智能:
1
智能计划排产
首先从计划源头上确保计划的科学化、精准化。通过集成,从ERP等上游系统读取主生产计划后,利用APS进行自动排产,按交货期、精益生产、生产周期、最优库存、同一装夹优先、已投产订单优先等多种高级排产算法,自动生成的生产计划可准确到每一道工序、每一台设备、每一分钟,并使交货期最短、生产效率最高、生产最均衡化。这是对整个生产过程进行科学的源头与基础。
▲图形化的JobDISPO APS高级排产
2
智能生产过程协同
为避免贵重的生产设备因操作工忙于找刀、找料、检验等辅助工作而造成设备有效利用率低的情况,企业要从生产准备过程上,实现物料、刀具、工装、工艺等的并行协同准备,实现车间级的协同制造,可明显提升机床的有效利用率。
▲智能的生产过程协同
还比如,随着3D模型的普及,在生产过程中实现以3D模型为载体的信息共享,将CATIA、PRO/E、NX等多种数据格式的3D图形、工艺直接下发到现场,做到生产过程的无纸化,也可明显减少图纸转化与看图的时间,提升工人的劳动效率。
▲3D Viewstation可视化
在智能制造中的应用
3
智能的设备互联互通
无论是工业4.0、工业互联网、还是中国制造2025,其实质都是以CPS赛博物理系统为核心,通过信息化与生产设备等物理实体的深度融合,实现智能制造的生产模式。对企业来讲,将那些贵重的数控设备、机器人、自动化生产线等数字化设备,通过DNC/MDC的机床联网、数据采集、大数据分析、可视化展现、智能决策等功能,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状态的实时监控等,就是CPS赛博物理系统在制造企业中最典型的体现。
▲DNC/MDC系统架构图
DNC是Distributed Numerical Control的简称,意为分布式数字控制,国内一般统称为机床联网。DNC系统通过一台服务器可实现对所有数控设备的双向并发通讯,支持Fanuc、Siemens、Heidenhain等上百种控制系统,兼容RS232、422、485、TCP/IP、无线等各类通讯方式,具有远程通讯、强制上传等常见功能,将数控设备纳入整个IT系统进行集群化管理。
管理学大师彼得·德鲁克曾经说过“你如果无法度量它,就无法管理它”,我们不仅需要通过DNC解决互联的问题,更需要通过MDC(Manufacturing Data Collection,直译为制造数据采集,俗称为机床监控)解决数据自动采集、透明化、量化管理的问题。
MDC通过一台计算机可以同时自动采集4096台数控设备,兼容数控机床、热处理设备(如熔炼、压铸、热处理、涂装等设备)、机器人、自动化生产线等各类数字化设备,兼容西门子等所有机床控制系统,以及三菱、欧姆龙等各类PLC的设备。
对高端带网卡的机床,可直接采集到机床的实时状态、程序信息、加工件数、转速和进给、报警信息等丰富的信息。并以形象直观的图形化界面进行显示,比如,绿色表示机床正在运行,黄色表示机床开机没干活,灰色表示没开机,红色表示故障,鼠标在机床图形上一点,相关的机床详细信息就全部实时地显示出来,实现对生产过程的透明化、量化管理。
▲MDC-Max设备远程监控界面
如果要实现更逼真的显示效果,可通过3D虚拟技术以立体的形式展现车间、设备、人体模型等,可以实现人体的行走、机床的放大缩小、设备信息的实时显示等各种操作,给用户一个更直观、形象的展现。
▲兰光3D可视化车间
4
智能生产资源管理
通过对生产资源(物料、刀具、量具、夹具等)进行出入库、查询、盘点、报损、并行准备、切削专家库、统计分析等功能,有效地避免因生产资源的积压与短缺,实现库存的精益化管理,可最大程度地减少因生产资源不足带来的生产延误,也可避免因生产资源的积压造成生产辅助成本的居高不下。
▲兰光刀具管理模块界面
5
智能质量过程管控
除了对生产过程中的质量问题进行及时的处理,分析出规律,减少质量问题的再次发生等技术手段以外,在生产过程中对生产设备的制造过程参数进行实时的采集、及时的干预,也是确保产品质量的一个重要手段。
通过工业互联网的形式对熔炼、压铸、热处理、涂装等数字化设备进行采集与管理,如采集设备基本状态,对各类工艺过程数据进行实时监测、动态预警、过程记录分析等功能,可实现对加工过程实时的、动态的、严格的工艺控制,确保产品生产过程完全受控。
▲对热处理设备生产参数的
实时监控与及时处理
当生产一段时间,质量出现一定的规律时,我们可以通过对工序过程的主要工艺参数与产品质量进行综合分析,为技术人员与管理人员进行工艺改进提供科学、量化的参考数据,在以后的生产过程中,减少不好的参数,确保最优的生产参数,从而保证产品的一致性与稳定性。
6
智能决策支持
在整个生产过程中,系统运行着大量的生产数据以及设备的实时数据,在兰光创新的很多用户里,企业一个车间一年的数据量就高10亿条以上,这是一种真正的工业大数据,这些数据都是企业宝贵的财富。对这些数据进行深入的挖掘与分析,系统自动生成各种直观的统计、分析报表,如计划制订情况、计划执行情况、质量情况、库存情况、设备情况等,可为相关人员决策提供帮助。这种基于大数据分析的决策支持,可以很好地帮助企业实现数字化、网络化、智能化的高效生产模式。
▲基于大数据分析的智能决策支持报表
总之,通过以上6个方面智能的打造,可极大提升企业的计划科学化、生产过程协同化、生产设备与信息化的深度融合,并通过基于大数据分析的决策支持对企业进行透明化、量化的管理,可明显提升企业的生产效率与产品质量,是一种很好的数字化、网络化的智能生产模式。
--- THE END ---
免责声明:本文内容系转载分享,版权归原作者所有。
如涉及版权,请联系删除
- 还没有人评论,欢迎说说您的想法!